Sparse Recovery over Graph Incidence Matrices: Polynomial Time Guarantees and Location Dependent Performance

نویسندگان

  • Mengnan Zhao
  • M. Devrim Kaba
  • Ren'e Vidal
  • Daniel P. Robinson
  • Enrique Mallada
چکیده

Classical results in sparse recovery guarantee the exact reconstruction of a sparse signal under assumptions on the dictionary that are either too strong or NP hard to check. Moreover, such results may be too pessimistic in practice since they are based on a worst-case analysis. In this paper, we consider the sparse recovery of signals defined over a graph, for which the dictionary takes the form of an incidence matrix. We show that in this case necessary and sufficient conditions can be derived in terms of properties of the cycles of the graph, which can be checked in polynomial time. Our analysis further allows us to derive location dependent conditions for recovery that only depend on the cycles of the graph that intersect this support. Finally, we exploit sparsity properties on the measurements to a specialized sub-graph-based recovery algorithm that outperforms the standard `1-minimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Sketching and Recovery with Expanders

Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper considers the same problem with the added twist that the sparse coefficients of the unknown vector exhibit further correlations as determined by a k...

متن کامل

Nonuniform Sparse Recovery with Gaussian Matrices

Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we f...

متن کامل

Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics

We study a weaker formulation of the nullspace property which guarantees recovery of sparse signals from linear measurements by `1 minimization. We require this condition to hold only with high probability, given a distribution on the nullspace of the coding matrix A. Under some assumptions on the distribution of the reconstruction error, we show that testing these weak conditions means boundin...

متن کامل

Weighted sparse recovery with expanders

We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show t...

متن کامل

Recovery guarantees for multifrequency chirp waveforms in compressed radar sensing

Radar imaging systems transmit modulated wideband waveform to achieve high range resolution resulting in high sampling rates at the receiver proportional to the bandwidth of the transmit waveform. Analog processing techniques can be used on receive to reduce the number of measurements to N , the number of potential delay bins. If the scene interrogated by the radar is assumed to be sparse consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018